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Abstract

In this note we present several thought experiments involving coin-flipping to illustrate the common
tendency to over-weight past data in forecasting the future, particularly in the context of investment
returns. We start by describing a survey we conducted of about 700 respondents involving the identifica-
tion of a biased coin. From there, we connect a simple coin-flipping thought experiment to the challenge
of picking good investments based on past returns. We then develop a more realistic model (moving on
from coin-flipping) that shows the difficulty in discerning attractive investments from within a pool of
mostly unattractive ones. We conclude with some observations on other practical challenges in using
past returns to identify exceptional investment opportunities.

1 The Experiment

You are presented with two coins: one is fair, and the other has a 60% chance of coming up heads. Unfortu-
nately, you don’t know which is which.1 How many flips would you need to perform in parallel on the two
coins to give yourself a 95% chance of correctly identifying the biased one? We had about 700 people answer
this question through an online survey.2 The vast majority of the respondents are current or past finance
professionals presumed to be both numerate and financially literate. They were specifically requested to
provide a ‘quick’ guess, not to calculate the correct answer mathematically or by simulation.

Below is a histogram of the guesses:

∗Victor is the founder and CEO of Elm Partners. Jeff and James work with Elm Partners in addition to pursuing their own
research and investment interests.

1Example inspired by: ‘Good and bad properties of the Kelly criterion,’ MacLean, Thorp, Ziemba, 2010, page 8.
2http://labs.elmfunds.com/pastreturns/
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The median guess was 40 flips. While lower than the full-credit answer of 143, it does show that the
respondents in general appreciate it takes a long time to identify a phenomenon with this kind of risk/reward
ratio simply by history. We include in Appendix 1 the calculation used to arrive at 143.3 Our respondents
are a pretty mathematical bunch, and we suspect that if they took their time to calculate an answer, rather
than giving a quick guess as we requested, most would have arrived at the correct answer. But the point of
the exercise was to illustrate how when we are thinking fast, we tend to overweight the value of small samples:
a full 30% of respondents, the single largest bucket, thought 10 flips or less was sufficient. This built-in bias
to over-weight small samples results in a tendency to ignore the investing dictum ‘past performance is not
indicative of future results’ when we clearly should not.

Post-survey discussions with respondents suggests they generally felt that an investment equivalent to a
60/40 coin would represent an attractive opportunity. At a rate of one flip per year, this would equate to
an investment with a Sharpe Ratio of 0.2, roughly comparable to most broad public asset classes.4 In fact,
a few suggested that 95% was too high a confidence test given the attractiveness of the opportunity. They
remarked that they’d be happy to invest half their money on each coin, and not worry about figuring out
which was which. This comment highlights the fact that in the two-coin problem we presented, you’ve got a
50% chance of picking the right coin without learning anything through flipping them. However, if we make
the problem just a little more realistic by asking how many flips are needed to discern a 60/40 biased coin
from 3 fair coins, the number of flips required jumps to 220 (see Appendix 1). So even if we had a lower
confidence test but with more potential coins, as would be likely in the real world, it still takes a long time
to sort the wheat from the chaff.

2 From Coins to Investments

Perhaps the most thought-provoking suggestion arising from the survey and coincident discussions came
from our friend Andy Morton. He proposed a more realistic investment problem, wherein you can invest in
100 active fund managers, but only 15% are expected to generate a post-fee return of 1% a year in excess of
their benchmark, while the other 85% are expected to lose 1% a year versus their benchmark, both measured
after expenses. We’ll assume that each has an annual risk versus the benchmark of 10%, which makes the
out-performance of the good funds versus the bad funds similar in Sharpe Ratio to a 60/40 coin versus a fair
coin. If anything, this may be optimistic given S&P Dow Jones reports that only 1 in 10 active managers
outperformed their benchmarks over relatively short horizons, while with our assumptions, just under 50%
of funds would outperform their benchmark each year.5

Let’s explore the ramifications of ‘chasing’ returns with this setup. You start off by putting 1% of your
portfolio into each fund, because you don’t yet have data to tell them apart. Your starting expected return
is -0.7% p.a. versus the benchmark (85% * -1% + 15% * 1%). Each year you move more of your portfolio to
the funds that have been doing well, using a Bayesian update of the probability of each fund being one of the
good ones, and that helps your expected return improve from the starting point (see Appendix 2 for more
detail). Alas, even by the end of 5 years - a reasonable ‘look-back’ window for real-world fund evaluation -
the expected return versus the benchmark on your portfolio will still be -0.66%. Extending out to 10 years
doesn’t help much either - you only improve to -0.60% expected return.6

3 Another version of the problem, posed and solved by Costas Kaplanis, lets the observer stop the flipping whenever desired.
In this version of the problem, the solution involves using Bayes’ Theorem to update the probabilities regarding the identities of
each coin. The result is that you usually need significantly less than 143 flips to be 95% confident you’ve identified the correct
coin, but there is still a significant probability that you will need well in excess of 143 to get to that level of confidence.

4We did have some respondents who suggested that they only invest in opportunities with a Sharpe Ratio of 1 or higher.
In our experience, investments that appear to have such high Sharpe Ratios are closed to outsiders, implicitly bear significant,
hidden negative tail risk, are ephemeral or, infrequently, are fraudulent. For a more academic treatment, see Harvey, Liu, Zhu,
‘....and the Cross-Section of Expected Returns,’ (2015), on SSRN.

5See SPIVA Persistence Scorecard for S&P Dow Jones report.
6We can make the example more realistic by introducing some mean-reversion into the picture in order to capture the

effect that when an investment strategy truly was extraordinary in the past, its very discovery will tend to diminish future
performance (or even make future returns negative), as more capital is drawn towards it. This doesn’t happen with coin flips.
The result is that a moderate amount of this effect means that even if the good managers are generating 4% more return
than the not-so-good managers, even after 50 years the expected return of your portfolio still won’t be positive. To give this
result some context, this amount of excess return is similar in risk-adjusted terms to Warren Buffett’s past 40 year track record
relative to the S&P 500. The amount of mean-reversion we introduced is such that each fund is expected over the coming year
to make back or give up 20% of the return it lost or made relative to the benchmark and to its underlying expected return
over the past five years. So, if a fund outperformed by 10% over the past five years, it would be expected to do 2% worse than
its normal expected return over the next year. Of course, a strategy set up to explicitly take advantage of the mean reversion
would do better, but that is the topic for another note.
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Attempting to build a portfolio of rare investment gems has to contend with the drag of the false positive.
Even if we can identify a good from a not-so-good investment with 90% accuracy, if the good ones represent
just 5% of the possible investments, the best we can expect is a portfolio comprised of 32% good ones and
68% not-so-good ones. The cognitive bias that makes it hard to see this result is a manifestation of base-rate
bias.

It’s generally believed that investors like Warren Buffett are very rare - much rarer than 1 in 1,000 - but
regardless let’s say all 15 of our ‘good’ fund managers are like Buffet and produce an excess Sharpe Ratio
of 0.45 (roughly Berkshire’s Sharpe Ratio of excess returns versus the S&P 500 since 1980). In this case,
after 5 years we’d still only be breaking even across the whole portfolio, and would only have about 50% of
our capital allocated to the 15 Warren Buffetts! We can clearly see that in the real world, where Buffetts
are much rarer, 5 to 10 years of track record just doesn’t tell us that much when dealing with a portfolio
composed mostly of mere mortals.

3 Extra Investing Complexities

Sadly, the power of past returns to predict the future is even weaker in investing than it is with coin flips.
In the real world, any kind of return-chasing strategy will face additional headwinds, amongst them the fact
that when an investment strategy was truly extraordinary in the past, its very discovery will diminish future
performance (or even make future returns negative), as more capital is drawn towards it. This may be the
prime reason why investor returns (i.e. dollar-weighted returns) tend to be significantly below fund returns
(i.e. time-weighted returns).7 This doesn’t happen with coin flips.

Another post-survey comment worth sharing, from the marketing capo of a well-established hedge fund
group, was “I don’t know anyone who would look at a fund investment without looking at the past track
record.” This highlights what is perhaps the central problem with investing in active fund managers: there is
virtually no other way to develop a forward-looking expectation other than to look at the past track record.
Unfortunately, as we’ve illustrated with our two-coin example, there is very limited statistical power in the
typical historical return dataset which is often limited to 3-5 years due to issues around manager turnover.

Perhaps when a fund picker says, “We only will look at funds with a 3-year track record if they give us
weekly returns,” he is thinking that if he observes the funds on a more frequent basis, that gives him a lot
more data points to draw upon to reach a good level of confidence. Unfortunately, it doesn’t help because
when we observe the managers on a more frequent basis, it’s requiring us to discern a coin that is closer to
50/50, which takes exactly the extra flips you get by sampling more frequently. Bob Merton pointed this out
in a 1980 paper titled, ‘On Estimating the Expected Return on the Market,’ in which he wrote, ‘Nothing is
gained in terms of accuracy of the expected return estimate by choosing finer observation intervals for the
returns.’8

Another noteworthy remark was, “An investment in a fund is always about the manager.” That at least
recognizes the limited value of past returns, especially in isolation and over typical, relatively short horizons.
The problem is it’s very hard to separate our qualitative evaluation of a manager’s character from our
knowledge of their track record - most managers with an apparently sterling, but often short-term, track
record also present as highly confident and competent people, in a way which might not be the case in a
different frame.

4 Conclusions

Once you accept the very low discriminating power of past returns in most practical investing contexts,
what are you to do? Of course, you’ll want to look at all the information at your disposal regarding any
investment, and track record should be part of the due diligence of any investment. If it’s particularly long

7See our Elm paper on return-chasing, also see Morningstar’s ‘Mind the Gap’ notes and Dalbar’s annual investor behaviour
reports.

8Merton, Robert, C., On Estimating the Expected Return on the Market: An Exploratory Investigation, Journal of Financial
Economics 8 (1980) 323-361. See appendix A, pages 355-357. To see why you can’t get around this inconvenient truth, note

that in continuous time, the number of years of observation, using the annual Sharpe Ratio (SR) as an input is 2
(
1.645
SR

)2
,

where 1.645 is the 95% cumulative probability level in a Normal distribution. If we sample more frequently, f times per year,

the required number of periods goes to 2
(

1.645
√
f

SR

)2
= 2f

(
1.645
SR

)2
. So, we’ll need to observe f times as many periods as when

we look annually, which is exactly how many more periods we get to observe by breaking the year into f intervals. Note this
exact result depends on a strong assumption about the distribution returns are being drawn from.

3



and distinguished, it might have some impact on your forecast, when used together with other factors. In
any case, we hope the reader will find it useful to consider the power of any track record you encounter
within the context of the simple coin-flip thought-experiment presented in this note.

All this discussion on the low value of historical returns in most investment contexts may leave the reader
feeling either depressed or liberated, depending on your perspective and occupation. If you’re an investor,
it’s really not so bad: just stick to investments where you don’t need to rely largely on the track record
to make your decision. That leaves almost all of the direct, cost-efficient, invest-able universe open to you:
bonds, equities, real estate and any strategy where you can produce a reasonable forward-looking return
estimate without relying on past returns.

Appendix A: Flipping a biased coin and one or more fair coins

We would like to calculate how many flips of 2 coins, one biased and one fair, we must observe to be 95%
confident that the coin with more heads is the biased one. Above we assumed that the biased coin has
probability of heads of 0.6, here we will be a bit more general and represent this probability by p. Since
each coin has a binomial distributions and the coins are assumed independent, the joint probability mass
function of the two coins after n flips is the product of two binomial probability mass functions. Denote by
Q(n, k, j) the probability of k heads for the biased coin and j heads for the fair coin after n flips, thus

Q(k, j, n) =

(
n

k

)
pk(1− p)n−k

(
n

j

)
1

2j
1

2n−j
(1)

=
1

2n

(
n

k

)(
n

j

)
pk(1− p)n−k (2)

This allows us to calculate the probability that the coin with more heads is biased as

1

2n

∑
k≤n

∑
j<k

(
n

k

)(
n

j

)
pk(1− p)n−k (3)

Choosing n to be 143 and p=0.6 we obtain 95.01%.
If we have more than 1 fair coin, the analysis is very similar. We calculate the joint probability mass

function for the biased coin and the fair coins simply by multiplying together the individual probability mass
functions. Then we sum over all of the cases where the biased coin has more heads than the maximum heads
of any fair coin. All though this is a closed form solution, the summation has way too many terms to handle
by hand. Therefore, we enlist the aid of a computer to calculate it.

Appendix 2 - Bayesian Capital Allocation for 100 Funds

In our 100 fund example from above, we used a ‘return-chasing’ capital-allocation rule based on Bayesian
learning, and here we explain the logic behind that in more detail.

Bayes Theorem (sometimes also called Bayes Rule) provides a powerful tool for updating our beliefs
about the world as new information is received. In the 100 funds example, for each fund we would have a
level of belief about whether that fund is in the Good group or the Bad group. Before we have any data,
our belief that a given fund is good would be at 15% for each fund. As we have incremental data about fund
performance, we can use Bayes Theorem to update our level of belief for each fund, in a way that’s rigorous
and consistent with the information-value contained by the new data. Specifically, we update our level of
belief by the relative likelihood of seeing the new data if our hypothesis is true versus if it’s false. To give
a simple example: if we get new data in, and that particular data is no more likely when our hypothesis is
true versus when it’s false, then our level of belief stays the same. On the other hand, if we get in new data
and that data is highly likely if our hypothesis is true, but highly unlikely if it’s false, then our level of belief
will go up substantially.

Bayes Theorem: For a hypothesis H with prior probability P (H) and new data D with P (D) 6= 0, then:

P (H|D) =
P (D|H)P (H)

P (D)
(4)
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Using the mechanics of Bayes Theorem and assuming that capital is allocated proportionally to our
level of belief that a fund is in the Good group, we can derive a closed-form solution for the mathematical
expectation of capital that would be allocated to the Good funds at each point in time as more fund data
becomes known. We can also see in closed form the mathematical expectation of the updated probability
that a Good fund is good and a Bad Fund is bad, at each point in time:

As we can see from the above chart, even with this fairly sophisticated update strategy, relatively short
periods of time don’t meaningfully impact our probability estimate that a Good fund is Good, or that a Bad
fund is Bad.
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